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Abstract Exploiting the capabilities offered by the plethora
of existing wavelets, together with the powerful set of or-
thonormal bases provided by wavelet packets, we construct
a novel wavelet packet-based set of speech features that is
optimized for the task of speaker verification. Our approach
differs from previous wavelet-based work, primarily in the
wavelet-packet tree design that follows the concept of criti-
cal bands, as well as in the particular wavelet basis function
that has been used. In comparative experiments, we inves-
tigate several alternative speech parameterizations with re-
spect to their usefulness for differentiating among human
voices. The experimental results confirm that the proposed
speech features outperform Mel-Frequency Cepstral Coef-
ficients (MFCC) and previously used wavelet features on
the task of speaker verification. A relative reduction of the
equal error rate by 15%, 15% and 8% was observed for the
proposed speech features, when compared to the wavelet
packet features introduced by Farooq and Datta, the MFCC
of Slaney, and the subband based cepstral coefficients of
Sarikaya et al., respectively.
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1 Introduction

Although many speech processing tasks, like speech and
speaker recognition, have reached satisfactory performance
levels on specific applications, and even though a variety of
commercial products were launched in the last decade, many
problems still remain as an open research area and flawless
solutions haven’t yet been found. For example, such a prob-
lem is providing a suitable parameterization of the speech
signal for the needs of speaker recognition. In fact, contem-
porary speaker recognition systems are composed of a fea-
ture extraction stage which aims at extracting speaker’s char-
acteristics while evading any sources of adverse variability,
and a classification stage that identifies the feature vector
with certain class. The classification stage that is based on
the probability density functions of the acoustic vectors is
seriously deranged in the case of inappropriate choice of
speech features which are suboptimal for the particular task.

Historically, the following speech features have domi-
nated the speech and speaker recognition areas: Real Cep-
stral Coefficients (RCC) introduced by Oppenheim (1969),
Linear Prediction Coefficients (LPC) proposed by Atal
and Hanauer (1971), Linear Predictive Cepstral Coeffi-
cients (LPCC) derived by Atal (1974), and MFCC (Davis
and Mermelstein 1980). Other speech features such as
Perceptual Linear Prediction (PLP) coefficients (Herman-
sky 1990), Adaptive Component Weighting (ACW) cep-
stral coefficients (Assaleh and Mammone 1994a, 1994b),
and various wavelet-based features (Sarikaya et al. 1998;
Sarikaya and Hansen 2000; Farooq and Datta 2001; etc.),
although presenting reasonable solutions for the same tasks,
did not gain widespread practical use, often due to their rel-
atively more sophisticated computation. Nowadays, many
earlier computational limitations have been overcome, due
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to the significant performance boost of contemporary micro-
processors. This opens possibilities for reevaluation of the
traditional solutions when speech features are selected for a
specific task.

In Davis and Mermelstein (1980), it was demonstrated
that the biologically motivated MFCC outperform LPC,
LPCC, and other features, on the task of speech recogni-
tion. From a perceptual point of view, MFCC roughly resem-
ble the human auditory system, since they account for the
nonlinear nature of pitch perception, as well as for the non-
linear relation between intensity and loudness. That makes
MFCC more adequate features for speech recognition than
other formerly used speech parameters like RCC, LPC, and
LPCC. This success of MFCC, combined with their robust
and cost-effective computation, turned them into a stan-
dard choice in the speech recognition applications. MFCC
became widely used on speaker recognition tasks, too, al-
though they might not represent the human voice unique-
ness with sufficient accuracy. In fact, when MFCC are used
for speech recognition, it is feasible to suppress the individ-
uality of different voices, while the linguistic information
remains unaffected by this process. However, in the text-
independent speaker recognition task, the linguistic infor-
mation is not a beneficial source of information, and yet, its
presence makes the speaker recognition process even more
difficult.

Over the past two decades, wavelet analysis has proven
to be an effective signal processing technique for a variety
of problems. In particular, in feature extraction schemes de-
signed for the purpose of speech recognition, wavelets have
been used twofold. The first approach uses wavelet trans-
form as an effective decorrelator instead of Discrete Co-
sine Transform in the feature extraction stage (Tufekci and
Gowdy 2000). According to the second approach, wavelet
transform is applied directly on the speech signal. In this
case, either wavelet coefficients with high energy are taken
as features (Long and Datta 1996), which nonetheless suf-
fer from shift variance, or subband energies are used in-
stead of the Mel filter-bank subband energies as in Sarikaya
and Hansen (2000). In particular, in the speech recognition
area, the wavelet packet transform, employed for the com-
putation of the spectrum, was first proposed in Erzin et al.
(1995). Later on, wavelet packet bases were used in Sarikaya
et al. (1998), Sarikaya and Hansen (2000) and Farooq and
Datta (2001, 2002) for the construction of features that were
close approximations of the Mel-frequency division using
Daubechies’ orthogonal filters with 32 and 12 coefficients,
respectively. Recently, Nogueira et al. (2006) studied three
filter-banks that are based on the Advanced Combinational
Encoder (ACE) “NofM” strategy (Nogueira et al. 2005).
Specifically, the authors investigated the appropriateness of
three different basis functions, namely the Haar wavelet, the
Daubechies’ wavelet of order 3 and the Symlets family of

wavelets, for improving the speech intelligibility in cochlear
implants. All experiments were performed on a common de-
composition tree that closely follows the frequency bands
associated with the electrodes in the ACE strategy.

In the present study by means of wavelet packets, we seek
a more general approach that allows easy handling of the
spectral content of a speech signal, flexible utilization of the
important frequency bands, and a variable frequency reso-
lution in each subband. Specifically, as an alternative to the
well-known MFCC features, wavelet packets are exploited
to approximate the psychoacoustic effect explained by the
critical bands concept, which was introduced in Fletcher
(1940). Wavelet packets are especially suitable for this ap-
proximation as they provide various orthonormal transforms
each one with different time-frequency localization proper-
ties especially assigned to particular purposes. Moreover, of
equal importance is that the wavelet packets technique em-
ployed here allows a beneficial selection of the underlying
basis functions, which in cepstral-coefficient-like Discrete
Fourier Transform (DFT)-based schemes is fixed to sinu-
soidal functions.

Our proposal differs from the aforementioned related
studies, chiefly in the wavelet packets tree design, but also
in the particular wavelet that has been used. In two earlier
works (Siafarikas et al. 2004; Ganchev et al. 2004), the
authors demonstrated two examples of successful wavelet
packet-based speech features, fine-tuned for the task of
speaker verification. In the present study, we fully de-
velop the methodology for building such trees. All potential
wavelet packet tree candidates are explored in a systematic
way and the best one is selected in an objective manner.
In addition, both the criteria for selecting an appropriate
wavelet packet basis and the particular choice of the most
suitable wavelet function are discussed. As the experimental
results presented in Sect. 8 demonstrate, the speech features
proposed in the present work outperform MFCC, as well
as the wavelet-based features introduced in Sarikaya et al.
(1998), Sarikaya and Hansen (2000) and Farooq and Datta
(2002). The advantage of the proposed speech features is
attributed to the following four reasons: (1) the underlying
wavelet function was selected in an objective way to max-
imize the speaker verification performance, (2) the wavelet
packet tree design, although inspired by the critical bands
concept, was fine-tuned in a systematic way for achieving a
better speaker discrimination power, (3) the optimal selec-
tion of frequency resolution in the different subbands that
accounts for the recent advances in the theory of critical
bands, (4) the availability of a larger set of relevant and non-
redundant speech features, when compared to the MFCC pa-
rameters. In fact, the advantage (4) is a direct consequence
of the larger number of frequency subbands due to reasons
(2) and (3).
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The remainder of this article is organized as follows: In
Sect. 2, we introduce briefly the speaker verification prob-
lem and terminology, outline the baseline MFCC parameters
and the speaker verification system that serves as platform
for comparative evaluation of various speech parameteri-
zation techniques, and define the performance assessment
measures. Section 3 outlines the speech corpora employed
in the development and evaluation of the proposed speech
parameterization scheme. The critical bands concept is pre-
sented briefly in Sect. 4. Section 5 offers a short introduction
to the Discrete Wavelet Packet Transform, which is the basic
instrument in our research. Section 6 describes the proposed
speech parameterization approach. Specifically, in the sub-
sections we firstly select the particular wavelet function for
the wavelet-packets tree design, perform systematic evalu-
ation of sixteen wavelet packet trees, and offer a recipe for
the computation of the proposed speech features. Section 7
outlines two alternative DWPT-based speech parameteriza-
tion schemes that were reported to outperform the MFCC.
In Sect. 8, we perform a comparative evaluation of the base-
line, proposed and alternative speech parameters. Finally, in
Sect. 9 conclusion remarks are offered.

2 The speaker verification problem

In general, the speaker verification (SV) problem can be de-
scribed as making a decision about acceptance or rejection
of an identity claim, judging on the base of the questioned
claim and a given speech utterance. Thus, during its opera-
tion any automatic SV system receives two inputs: an iden-
tity claim (PIN, user’s name, keyword, etc.) made by the
speaking person and a certain amount of speech, represent-
ing his/her or someone else’s voice. Another term frequently
used for description of the SV task is one-speaker detec-
tion, which emphasizes the fact that the outcome of the SV
process is always a binary decision: yes—the speaker is ac-
cepted with the claimed personality, or no—s/he is rejected.
The actual decision depends on the degree of similarity be-
tween the speech sample and a predefined model for the en-
rolled user, whose identity the speaker claims. When an en-
rolled user, i.e. client of the system, claims her/his own iden-
tity, we designate the input utterance as a target trial. When
a non-user addresses a SV system, or when an enrolled user
claims identity belonging to another user, we denote that ut-
terance as a non-target trial. The non-target trials are also
referred to as impostor trials.

With respect to the linguistic contents of the speech data,
the SV process can be text-dependent or text-independent.
The text-dependent scenarios are mostly used in applica-
tions which require high degree of security. Most often these
are military, monetary, or other restricted-access or highly
guarded subdivisions, where the major requirement is low

probability of false acceptance of non-authorized persons.
In that connection, during the verification process a strong
cooperation by the speaker is required since s/he has to fol-
low a strict predefined protocol, and carefully follow the in-
structions of the system. Furthermore, in these applications
the user is identified through detecting something he has,
examining something he knows, and verifying something he
is, e.g. his voice. As it is obvious, in the text-dependent task
the personal comfort of users is a secondary consideration.
In opposite, in case of text-independent speaker verifica-
tion, which is the most challenging among all SV tasks, the
speaker is not obligated to follow a specific predefined sce-
nario or instructions from the system, such as pronouncing
a password, or prompted by the system sequence of num-
bers and/or sentences. Therefore, in the text-independent
scenario the SV decision is solely based on a given iden-
tity claim and voice, and not on something the person has
or something s/he knows. Since an explicit cooperation is
not required the text-independent scenario is more comfort-
able for the user and the SV process may remain hidden for
her/him.

2.1 Description of the speaker verification system

The SV system briefly described in the following serves as
a platform on which we evaluate the practical usefulness
of several alternative speech parameterization techniques.
This SV system (Ganchev et al. 2002a, 2002b), which suc-
cessfully participated in the 2002 NIST Speaker Recogni-
tion Evaluation (NIST 2002) has a modular structure, where
each enrolled user is detected by an individual expert. Each
expert considers two hypotheses—either the input speech
originates from the same person, whose identity the speaker
claims, or it originates from another person, which has dif-
ferent identity. In order to test each of these two hypotheses,
we build two models: one for the voice of the enrolled user,
and another one representing the rest of the world. The lat-
ter model is also designated as a reference. Since the refer-
ence model has to be sufficiently flat not to interfere with the
models of the individual users, it is built by exploiting large
amounts of speech from multiple speakers.

In Fig. 1, a simplified block diagram of the Probabilistic
Neural Network (PNN)-based SV system is presented. The
upper part of the figure summarizes the process of training,
where the process of building of the reference model, as well
as construction of the individual codebooks for the target
speakers is shown. As the figure presents, an individual PNN
for each of the target users is trained, by utilizing the refer-
ence codebook and the one created for the corresponding
user. The lower part of the figure illustrates the operational
mode of the system. The processing steps, the SV system
performs for each test trial in order to make a final decision,
are shown. In the following subsections, the main building
blocks of our SV system are described in details.
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Fig. 1 A simplified block diagram of the speaker verification system

2.1.1 Speech pre-processing and speech parameterization

The present subsection offers a comprehensive outline
of the speech pre-processing and the computation of the
MFCCs. In the comparative evaluation of speech parameters
(Sect. 8), the MFCCs serve as the baseline speech features.

The speaker recognition corpora utilized in this work (see
Sect. 3), consists of telephone quality speech, sampled at
8 kHz. Due to the Lombard effect, or to differences in the
temperament and speaking style of talkers, saturation by
level is a common phenomenon for telephone speech sig-
nals. In order to reduce the spectral distortions it causes,
a band-pass filtering of speech is performed as a first step
of the feature extraction process. A fifth-order Butterworth
filter with pass-band from 80 Hz to 3800 Hz is used for
both training and testing. Then the speech signal is pre-
emphasized with the filter

H(z) = 1 − az−1, (1)

where a = 0.97, and subsequently windowed into frames of
32 ms duration with skip rate of 16 ms, using a Hamming
window. A voiced/unvoiced speech separation is performed
by a modification of the autocorrelation method with clip-
ping (Rabiner et al. 1976). Only the voiced speech frames
are used due to their relatively better robustness to inter-
ference. Next, each voiced speech frame is subjected to
N = 1024-point short-time DFT, and afterwards it is passed

through a set of M = 32 equal-area triangular band-pass
filter-bank channels:

Hi(k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for k < fbi−1 ,
2(k−fbi−1 )

(fbi
−fbi−1 )(fbi+1 −fbi−1 )

for fbi−1 ≤ k ≤ fbi
,

2(fbi+1 −k)

(fbi+1 −fbi
)(fbi+1 −fbi−1 )

for fbi
≤ k ≤ fbi+1 ,

0 for k > fbi+1 ,

(2)

where i = 1,2, . . . ,M stands for the ith filter, fbi
are

M + 2 boundary points that specify the M filters, and
k = 1,2, . . . ,N corresponds to the kth coefficient of the
N -point DFT. Due to the term 2/(fbi+1 − fbi−1) the filter-
bank (2) is normalized in such a way that the sum of coef-
ficients for every filter equals one. We have accepted an ap-
proximation of the Mel-scale, with 13 linearly spaced filter-
banks, lowest central frequency 200 Hz, highest 1000 Hz
and 19 log-spaced with highest central frequency 3690 Hz.
This filter-bank is essentially the filter-bank introduced in
Slaney (1998) adapted for sampling frequency 8 kHz. Sub-
sequently, thirty-two (J = 32) MFCC parameters are com-
puted after applying Discrete Cosine Transform (DCT):

Cj =
M∑

i=1

Xi cos

(

j

(

i − 1

2

)
π

M

)

, j = 0,1, . . . , J − 1 (3)

to the log-filter-bank outputs Xi :

Xi = log10

(
N−1∑

k=0

|X(k)|Hi(k)

)

, i = 1,2, . . . ,M. (4)
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A comprehensive description of the MFCC computation
steps is offered in Ganchev et al. (2005), where various im-
plementation strategies are evaluated.

2.1.2 The client’s and reference models design

Because the complexity and computational demands of the
PNNs depend strongly on the number and dimensionality of
the training vectors, a k-means clustering algorithm (Harti-
gan and Wong 1979) is used to compact the training data.
Codebooks are built for both clients and non-clients of the
system. The codebook for a client is built from the speech
recordings, collected during her/his enrollment session. The
non-clients codebooks, built by utilizing a representative
speech database, are further utilized in the gender-specific
reference model. The common reference model is employed
for counterbalancing the scores produced by the individual
user models. In the baseline version of our SV system, we
used a codebook of 128-vectors for the clients, and a code-
book of 256-vectors for the reference model. The size of
the codebooks was chosen as a trade-off between computa-
tional demands and performance (details in Ganchev 2005,
Chap. 3).

2.1.3 The PNN-based classifier

The PNNs, introduced in Specht (1990), combine non-
parametric probability density estimation with minimum
risk decision making. The density estimation implements
the Parzen window estimator (Parzen 1962) by using a mix-
ture of Gaussian basis functions. After the probability den-
sity functions for all classes are estimated, the posterior
probabilities are computed, and afterwards the Bayes’ op-
timal decision rule is applied to select the winning class.

Since the SV process is a two-class separation problem,
a PNN for classification in K = 2 classes is considered. The
probability density function fi (xp) of each of the two classes
ki , i = 1,2, is computed by:

fi (xp) = 1

(2π)d/2σd

1

Mi

×
Mi∑

j=1

exp

(

− 1

2σ 2
(xp − xij )

T (xp − xij )

)

,

i = 1,2, (5)

where xij is the j th training vector from class ki ; xp is the
pth input vector; d is the dimension of the speech feature
vectors; and Mi is the number of training patterns in class ki .
Each training vector xij is assumed a centre of a kernel func-
tion, and consequently the number of pattern units in the first
hidden layer of the neural network is given as a sum of the
pattern units for all classes. The standard deviation σ acts

as a smoothing factor, which softens the surface defined by
the multiple Gaussian functions. As presented in (5), σ has
the same value for all the pattern units, and therefore, a ho-
moscedastic PNN is considered.

After the estimations of the class-conditional probability
density functions is obtained through (5), the Bayes’ optimal
decision rule (6) is applied to distinguish class ki , to which
the pth input vector xp belongs:

D(xp) = argmax
i

{hicifi (xp)}, i = 1,2, (6)

where hi is the a priori probability of occurrence of the pat-
terns of category ki , and ci is the cost function in case of
misclassification of a vector belonging to class ki . A com-
prehensive description of the PNN is available in Specht
(1990).

2.1.4 The output score computation, making the final
decision

The probability P(ki |X) all test vectors xp of a given test
trial X = {xp}, p = 1,2, . . . ,P to belong to class ki is com-
puted as:

P(ki |X) = N(D(xp) = ki)
∑K

j=1 N(D(xp) = kj )
, i = 1,2, (7)

where N(D(xp) = ki) is the number of vectors xp catego-
rized by the Bayes’ optimal decision rule (6) as belonging
to class ki . Since the SV task assumes an exhaustive taxon-
omy, any of the inputs xp falls in one of the two classes ki .
Next, for a given test trial, the averaged probability for all
output decisions of a particular PNN, obtained by testing
with multiple feature vectors, is utilized to compute a score:

χ = η(P (k1|X) − β), (8)

where η and β are constants for tuning the scale and the
offset of the produced score, respectively.

A speaker-independent threshold θ , pre-computed on a
development dataset in a manner that satisfies the decision
strategy of the prospective application, is applied to the
score (8), and a final decision O(θ) is made:

O(θ) =
{

1, i.e. accept for χ ≥ θ ,
0, i.e. reject for χ < θ .

(9)

When the score χ is above or equal to the threshold, the
claimant is accepted. Otherwise, the utterance is considered
to belong to an impostor speaker.

2.1.5 The operational mode

In summary, the SV system decides whether or not the input
trial belongs to the claimed speaker, depending on the de-
gree of similarity of the input feature vectors to the speaker’s
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model and to the reference model. Equation (5) estimates
the degree of similarity by computing the corresponding
Euclidean distances. For every input speech frame, a binary
decision is made by applying the Bayes’ optimal decision
rule (6). Next, through (7) an estimate of the probability a
given test trial to belong to the claimed user is obtained.
Finally, a speaker-independent threshold is applied to the
score computed through (8), and a final decision as speci-
fied by (9) is made. A comprehensive description of our SV
system is available in Ganchev et al. (2002a, 2002b).

2.2 Cost-based speaker verification performance measure

Two types of errors can occur in the SV process. The first
one, called a false rejection (FR) error, occurs when the true
target speaker is falsely rejected as being an impostor, and as
a result, the system misses recognizing an attempt belonging
to the true authorized user. The second type, called a false
acceptance (FA) error, occurs when a tryout from an impos-
tor is accepted as if it came from the true authorized user.
The latter error is also known as a false alarm, because a
non-target trial is accepted as a target one. The FR and FA
are employed together to characterize the performance of
the SV systems under investigation.

A cost-based performance measure CDet (10) was used
in the experiments to assess the SV performance. It is de-
fined (NIST 2002) as a weighted sum of the false ac-
ceptance and false rejection error probabilities, designated
as P(FalseAlarm|NonTarget) and P(Miss|Target), respec-
tively:

CDet = CMissP(Miss|Target)P (Target)

+ CFalseAlarmP(FalseAlarm|NonTarget)

× (1 − P(Target)), (10)

where the parameters CMiss and CFalseAlarm are the rela-
tive costs of detection errors, and P(Target) is the a pri-
ori probability of the specified target speaker. According to
the rules of the 2001 NIST Speaker Recognition Evalua-
tion (SRE), the target speaker probability in the experiments
with the NIST 2001 SRE database is P(Target) = 0.01, and
P(NonTarget) = 1 − P(Target) = 0.99, and the costs of the
FR and FA are CMiss = 10 and CFalseAlarm = 1, respectively.
The cost measure CDet is further normalized as:

CNorm = CDet/CDefault,

where CDefault = min{CMissP(Target),

CFalseAlarmP(NonTarget)} (11)

for making its values more intuitive. Here, CDefault repre-
sents the zero value (a system providing no information),

which is the cost obtained without processing the data, al-
ways making the same decision—either accept or reject. Fi-
nally, the range of values received by CNorm is between zero,
for a system that makes no mistakes, and a positive constant
that depends on the ratio of the products CMissP(Target) and
CFalseAlarmP(NonTarget), for a worthless system. The actual
decision cost, DCFact, is the decision cost CNorm computed
after the final decision is made. Thus, the DCFact depends
not only on the quality of modeling, but also on the relevance
of a priori estimated speaker-independent threshold. The op-
timal decision cost, DCFopt, gives an impression about the
prospective performance of a system when “the optimal”
speaker-independent threshold is applied.

Since the values of CNorm are not as intuitive as other
widely used performance measures, we also provide the
Equal Error Rate (EER) decision point, where the false re-
jection and the false acceptance error probabilities are equal,
i.e., when computing the EER, we assume equal weights
for the SV cost parameters CMiss = CFalseAlarm = 1. The
EER decision point is accepted as intuitive and more bal-
anced performance estimation. However, it has the disad-
vantage that the final decision is made a posteriori, and thus,
the reported SV performance is too optimistic. While the
EER gives an application-independent assessment of the po-
tential performance of a system, the DCFact and DCFopt
are application-specific due to the cost coefficients CMiss

and CFalseAlarm. In practice, these costs are application-
dependent. Their ratio varies from one application to another
within the range of 1:10 to 10:1, depending on whether the
emphasis is placed on security or comfort of use.

Since the present study aims at comparing the practical
usefulness of various feature extraction techniques rather
than optimizing an absolute SV performance, we accepted
the DCFopt and EER as the main performance measures.
Together they offer a unique representation of every experi-
mental result.

3 Speaker recognition corpora

There exists a multitude of speaker recognition corpora col-
lected to capture the variability of real-world conditions.
These corpora are representative for a particular applica-
tion and have been created to address specific aspects of the
speaker recognition problem, such as the influence of the
microphone/handset type; transmission channel effect; en-
vironmental interferences; emotional speech; speech under
stress, etc. None of these corpora provides universal envi-
ronment for research that is exhaustive for a real-world ap-
plication. In fact, these corpora offer the opportunity some
specific aspects of interest to be studied under controlled
conditions. A typical member of this group is the Polycost
speaker recognition database, which has been collected to
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assist research in land phone-based teleservices, which in-
corporate speaker recognition functionality. The good com-
pactness of Polycost makes it a convenient choice for the
development experiments in Sect. 6, which aim at the opti-
mization of the proposed speech parameterization scheme.

A second kind of speaker recognition databases, which
are purposely created by selecting and post-processing por-
tions of large existing corpora, are specially designed for
basic technology evaluation. These databases are used in
periodic evaluation campaigns (e.g. the annual NIST SRE
technology evaluations) and are explicitly designed to have
many (but controlled) degrees of variability. The latter al-
lows assessment of various aspects of the evaluated tech-
nology just by analyzing the results from a single exper-
iment. The 2001 NIST SRE—one-speaker detection data-
base, which consists of compilation of post-processed and
re-segmented mobile phone speech recordings is represen-
tative of this second kind of databases. In Sect. 8, we utilize
the 2001 NIST SRE data for validating the significance of
our approach and assessing the practical value of the pro-
posed speech parameterization scheme.

3.1 The Polycost speaker recognition database

Polycost contains real-world telephone data (English spoken
by foreigners) collected across the international telephone
networks of Europe. The speech data are representative
for research related to telephone-driven telephone services
and automated call-centers. The Polycost database contains
1285 calls (around 10 sessions per speaker) recorded by 134
speakers (74 males and 60 females) from 13 different Eu-
ropean countries. Each session comprises 10 prompts with
connected digits uttered in English, two prompts with sen-
tences uttered in English, and two prompts in the speaker’s
mother tongue (17 different languages or dialects). One of
the prompts in the speaker’s mother tongue consists of free
speech. Detailed descriptions of the Polycost database can
be found in Hennebert et al. (1996, 2000). In the present
work, we use version v1.0 of the Polycost speaker recogni-
tion database with bugs 1÷5 fixed (Polycost Bugs 1999).

3.2 2001 NIST SRE—one-speaker detection database

The 2001 NIST SRE—one-speaker detection database is
an excerpt from the Switchboard-Cellular corpora, which
had been post-processed in order to remove any significant
pauses in the speech signal and cancel transmission chan-
nel echoes. The training data consist of spontaneous speech
from 74 male and 100 female speakers, recorded in dif-
ferent environmental conditions: {‘inside’, ‘outside’, ‘vehi-
cle’}. All training speech had been acquired over the mobile
cellular networks of USA. Each target user is represented
by about 2 minutes of spontaneous speech, extracted from a

single conversation. The test data consist of speech recorded
over {‘TDMA’, ‘CDMA’, ‘Cellular’, ‘GSM’, and ‘Land’}
transmission channels. Both same and different phone num-
ber calls (the latter imply different handsets) and different
transmission channels are available for each user. Depend-
ing on the amount of speech the test trials contain, they
are separated in the following five categories: {‘00-15’, ‘16-
25’, ‘26-35’, ‘36-45’, and ‘46-60’} seconds. The complete
one-speaker detection task includes all test trials, and there-
fore covers all aforementioned sources of variability. In the
present study, we only consider the complete one-speaker
detection task, and no details are given for the sub-tasks.
A comprehensive description of the evaluation database and
evaluation rules is available in the 2001 NIST SRE Plan
(NIST 2001).

4 Critical bands concept

During the past decades, considerable progress has been
made in the exploration of the human auditory system
(Fletcher 1940; Zwicker 1961; Glasberg and Moore 1990).
Fletcher (1940) suggested that the peripheral auditory sys-
tem behaves as if it consisted of a bank of bandpass filters
with overlapping passbands, now referred to as auditory fil-
ters. The frequency selectivity of the auditory system and
the characteristics of its corresponding auditory filters can
be investigated by conducting perceptual experiments based
on the technique of masking. The masking effect prevents
the human auditory system from being sensitive to the de-
tailed spectral structure of a sound within the bandwidth of
a single auditory filter. To describe the effective bandwidth
of the auditory filter over which the main masking effect
takes place, Fletcher introduced the term of critical band-
width (CB). He also used the phrase critical bands to refer
to the concept of the auditory filters.

Since Fletcher’s first description of the critical bands,
many experimenters attempted to estimate it. Zwicker
(1961) estimated that the critical bandwidth is constant and
equal to 100 Hz for frequencies below 500 Hz, while for
higher frequencies, it increases approximately in proportion
with the centre frequency. Exploiting this first approxima-
tion, Davis and Mermelstein (1980) proposed the renowned
MFCC features based also on another similar perceptual
(subjective) measure, namely the Mel-scale, which repre-
sents the perceived frequency or pitch of a tone as a function
of its acoustic frequency. However, MFCC features, as com-
puted in Davis and Mermelstein (1980), include approxima-
tions of the critical bands that do not completely conform to
our today’s understanding of that matter, as explained in the
paragraphs that follow.

The critical bandwidth relationship, derived by Zwicker,
was estimated when there were only few estimates avail-
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able for low centre frequencies. However, in more recent at-
tempts to determine the shape of the auditory filters and esti-
mate the Equivalent Rectangular Bandwidth (ERB), Moore
(2003) demonstrated that there are discrepancies in compar-
ison with Zwicker’s findings (Zwicker 1961), particularly at
frequencies below 500 Hz where the critical bandwidth con-
tinues to decrease with frequency.

The ERB might be regarded as a measure of the CB and,
according to Moore (2003), it is equal to the bandwidth of
a perfect rectangular filter, whose pass-band is equal to the
maximum transmission of the specified filter and transmits
the same power of white noise as the specified filter. Equa-
tion (12) presents the ERB as a function of centre frequency
f using moderate sound levels for young people with nor-
mal hearing (Glasberg and Moore 1990):

ERB = 24.7(4.37f + 1), (12)

where the values of ERB and f are specified in Hz and kHz,
respectively. As presented in Moore (2003), (12) fits roughly
the values of ERB estimated in many different laboratories.
Therefore, ERB approximates the CB, which in turn is a
subjective measure of the bandwidth of the auditory filters.
However, the CB function derived by Zwicker fits markedly
worse to the above equation at low frequencies.

The incorporation of that knowledge in automatic speech
and speaker recognition led to an increased performance
due to the emergence of new feature extraction techniques.
Many innovative speech features were designed, for exam-
ple: PLP (Hermansky 1990), ACW (Assaleh and Mammone
1994a, 1994b), but the MFCC paradigm preserved its pre-
dominance. In Sect. 6, exploiting the most recent advances
in the understanding of the human auditory system and
based on the insights of Moore (2003), the authors provide
an approximation of the perceptual behavior of the auditory
system which in turn ensures the framework for the con-
struction of a successful wavelet packets tree. Before that,
however, for comprehensiveness of our exposition, in Sect. 5
we briefly introduce the wavelet packet analysis and the dis-
crete wavelet packets transform.

5 Wavelet packet analysis

Wavelet analysis is relatively new and is usually consid-
ered complementary to existing analysis techniques such as
Fourier analysis. However, in addition to its profound theo-
retical background which stems from group theory of repre-
sentations (Daubechies 1992), in many cases, wavelets suc-
cessfully contributed to the solution of problems for which
limited progress had been made prior to their introduction,
as for instance: noisy signal estimation and compression.
The present section introduces wavelet analysis and under-
lines its major advantages over Fourier analysis, paying par-
ticular attention to wavelet packet analysis.

5.1 Discrete Wavelet Transform

Historically, wavelet analysis begins with Continuous Wave-
let Transform (CWT). It provides a time-scale representa-
tion of a continuous function where scale plays a role anal-
ogous to frequency in the analysis with the well-known
Fourier Transform (FT). More precisely, wavelet analysis
uses dilations of a single function, called wavelet, to analyze
a signal with different scales or resolutions. A comprehen-
sive analytic presentation of wavelet analysis and its basic
transform, CWT, can be found in Mallat (1998).

The basic tool for a practical analysis of discrete-time
signals via wavelets is the Discrete Wavelet Transform
(DWT). DWT bears a relation to the CWT analogous to the
relation that the DFT bears to the FT. DWT is orthonormal,
and thus can be regarded as a sub-sampling of the two di-
mensional CWT on dyadic scales sj = 2j , j ∈ N, and on
selected times tj = 2j k, k ∈ Z in a given dyadic scale sj .
In this way, a one dimensional time-scale representation of
a signal is obtained in contrast to the DFT that provides,
solely, a frequency representation of a signal.

Although DWT can be regarded as an attempt to pre-
serve the key features of the CWT in a succinct manner,
it can be formulated entirely in its own right. Analyti-
cally, the DWT of level J ∈ N of a discrete-time signal
x[n], n = 0,1, . . . ,N −1 with N = 2J , is an N -dimensional
vector, W = [W1 W2 · · · WJ VJ ]T . Each Wj is an N/2j -
dimensional vector of wavelet coefficients each one of
which is associated with adjacent time intervals of width
2j and frequency interval [1/2j+1,1/2j ], while VJ is a one
dimensional vector containing the scaling coefficient asso-
ciated with the whole time interval of width 2J and fre-
quency interval [0,1/2J+1]. Therefore, in contrast to the
frequency analysis provided by DFT, the DWT provides a
time-frequency decomposition of a signal in the manner il-
lustrated in Fig. 2. The tiling of the time-frequency plane
with rectangles of different size means that energy compo-
nents of the signal within different rectangles of specific
time and frequency coordinates can be discerned. There-
fore, the rectangles are an indication of the optimal resolu-
tion achieved by the time-frequency capability of DWT. As
presented in Fig. 2, DWT provides an octave-based decom-
position of the frequency domain and gives good frequency
resolution in the lower frequencies that gets worse as we
move to higher frequencies. On the contrary, DWT provides
a good time resolution in the higher frequencies that gets
worse as we move towards lower frequencies.

In practice, the DWT is computed by the successive ap-
plication of two discrete filters, called wavelet filter and
scaling filter, initially on the signal, and subsequently on
the lower frequency part of the resulting signal, followed
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Fig. 2 Discrete Wavelet
Transform time-frequency
analysis

by subsampling by a factor of two. A filter {hl : l =
0,1, . . . ,L − 1,L = 2k, k ∈ N} is called a wavelet filter if

L−1∑

l=0

hl = 0 and

L−1∑

l=0

hlhl+2n =
{

1, if n = 0,
0, if n ∈ Z, n �= 0,

(13)

where the last summation expresses the orthonormality
property of a wavelet filter (Z is the set of integer num-
bers). As its name suggests, an explicit connection exists
between this filter and the wavelet function used in CWT
(Percival and Walden 2000). The scaling filter is defined in
terms of the wavelet filter via the quadrature mirror relation-
ship gl = (−1)l+1hL−1−l .

Application of the wavelet filter {hl} is equivalent to se-
lecting the higher frequency part of a signal, while applica-
tion of the scaling filter {gl} is equivalent to selecting the
lower frequency part. Therefore, in the decomposition of
a signal with the DWT, only the lower frequency band is
decomposed giving a right recursive binary tree structure,
where its right child represents the lower frequency band
and its left child represents the higher frequency band.

Ideally, it would be desirable to have wavelet and scaling
filters the frequency response of which were limited to the
frequency bands [1/4,1/2] and [0,1/4], respectively. In this
case, the actual time-frequency tiling of the DWT would co-
incide with the optimal tiling depicted in Fig. 2. The degree
that these nominal frequency intervals are approximated (by
the actual frequency decomposition achieved by DWT) de-
pends on the frequency characteristics of the wavelet filter
and therefore the scaling filter.

DWT exploits the flexibility provided by the possibility
of choosing the wavelet filter according to specific needs.
Thus, different wavelet filters can provide fine-tuned DWT

analyses, although the optimal time-frequency analysis of
DWT is depicted in Fig. 2. Furthermore, wavelet and scal-
ing filters play a similar role in the formulation of Discrete
Wavelet Packet Transform (DWPT) presented in the follow-
ing subsection.

5.2 Discrete Wavelet Packet Transform

Discrete Wavelet Packet Transform is a generalization of
the DWT that allows an effective representation of the time-
frequency properties of a discrete signal so that useful fea-
tures for a particular purpose can be appropriately extracted.
In this subsection, we present the analysis of a time series
with DWPT showing the advantages over both DFT and
DWT as far as their capability for time-frequency transform
is concerned.

Let x[n], n = 0,1, . . . ,N − 1, where N is an integer
multiple of 2J for some positive integer J , denote a real
valued discrete time signal. For 0 ≤ j ≤ J , the level j

DWPT of x[n] is an orthonormal transform yielding an N

dimensional vector of coefficients that can be partitioned as

[W2j −1
j W2j −2

j . . . W1
j W0

j ]T , where each Wn
j is a N/2j

dimensional vector, each element of which is nominally as-
sociated with adjacent time intervals of width 2j and fre-
quency interval In

j = [ n

2j+1 , n+1
2j+1 ]. These 2j vectors divide

the Nyquist frequency interval [0,1/2] into 2j intervals of
equal width (so the bandwidth associated with each j th level
DWPT coefficient is 1/2j+1) and each one of its N/2j ele-
ments provides information associated with the time interval
[2j k,2j (k + 1)], k = 0,1, . . . ,N/2j − 1. Thus, the DWPT
provides localized time-frequency description of a signal. In
addition, each level of DWPT provides uniform frequency
and time analysis, as shown in Fig. 3, in contrast to DWT
that provides an octave based decomposition. However, as
it is well known, the time-frequency analysis of any time-
frequency transform is restricted by Heisenberg’s principle
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Fig. 3 Three-dimensional illustration of time frequency analysis
achieved with levels j = 0 through j = 7 of Discrete Wavelet Packet
Transform. For clarity, DWPT of level j = 3 is shown on the right hand
side of the figure. At level j = 0, time width is 1 and bandwidth is 1/2;

At level j , time width is 2j and bandwidth is 1/(2 · 2j ) = 1/2j+1.
Therefore, at each level j , the time axis [0,N] is divided into N/2j

intervals while the frequency axis [0,1/2] is divided into 2j intervals

stating that good frequency analysis leads to bad time lo-
calization and vice-versa. In practice, DWPT of level j is
formed by filtering DWPT of level j − 1 using the wavelet
and scaling filters {hl} and {gl} (defined in Sect. 5.1) and
setting W0

0[n] ≡ x[n], as shown in the following two rela-
tionships:

W2n
j [k] =

L−1∑

i=0

an,iWn
j−1[(2k + 1 − i)mod(N/2j−1)],

k = 0,1, . . . ,N/2j − 1, an,i =
{

gi, if n is even,
hi, if n is odd,

(14)

W2n+1
j [k] =

L−1∑

i=0

bn,iWn
j−1[(2k + 1 − i)mod(N/2j−1)],

k = 0,1, . . . ,N/2j − 1, bn,i =
{

gi, if n is odd,
hi, if n is even.

(15)

The most appealing aspect of DWPT is that carefully se-
lected basis vectors belonging to different level DWPTs can
be grouped together in order to create an even larger collec-
tion of orthonormal transforms. This is achieved by organiz-
ing all the DWPTs for levels j = 0,1, . . . , J into a tree struc-
ture, called wavelet packet (WP) tree. This is possible since,
in going from DWPT of level j − 1 to the next level j , each
parent node Wn′

j−1 is circularly filtered and down-sampled
twice: once with the wavelet filter {hl} and once with the
scaling filter {gl}, yielding two children nodes Wn

j indexed
by n = 2n′ and n = 2n′ +1. Having constructed the WP tree,
the coefficient vectors Wn

j can be collected together to form

a set S = {Wn
j : j = 0,1, . . . , J, n = 0,1, . . . ,2j −1}, where

each Wn
j ∈ S is nominally associated with the frequency

band In
j . Any subset S1 ⊂ S that provides a non-overlapping

complete coverage of [0,1/2] with coefficient vectors Wn
j

yields an orthonormal DWPT. In this way, DWPT provides
a flexible tiling of the time-frequency plane with various fre-
quency resolutions in the corresponding frequency intervals.
That property will turn out to be extremely useful in the ap-
proximation of the critical bands that the authors present in
Sect. 6. Before that, however, in Sect. 6.1 we study several
wavelet functions, and subsequently select the one with the
highest benefit for the SV task.

6 The proposed DWPT-based speech parameterization
scheme

The present section discusses the way the DWPT approxi-
mates the critical bands along with the constraints it encoun-
ters. Specifically, in Sect. 6.1 the suitability of five wavelet
functions for the SV task is studied. Next, utilizing the most
successful wavelet function, a number of DWPT trees cor-
responding to different approximations of the critical bands
are constructed and their discrimination power is evaluated
on the SV task. The most advantageous DWPT tree is fur-
ther utilized in the computation of the proposed speech fea-
tures. Finally, in Sect. 6.3 a recipe for computing the pro-
posed speech features is offered.

6.1 Selection of wavelet function for WP tree design

As it was discussed in Sect. 5.2, the capability of the DWPT
to provide various time-frequency representations depends
on the wavelet function used and thus the corresponding
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Fig. 4 The log squared gain functions of the wavelet and scaling filters
for the: Battle-Lemarié, Daubechies, and discretized Meyer wavelets.
The number after the name of the wavelet indicates the order. The

ordinate shows the log squared gain in dB, and abscissa f is the nor-
malized frequency

wavelet and scaling filters. Therefore, DWPT analysis can
be further enhanced and fine-tuned by carefully selecting a
wavelet function that is appropriate for the specific applica-
tion. In the present work, the variety provided by the many
existing wavelet families (Mallat 1998) is explored in or-
der to augment the frequency localization abilities of the se-
lected DWPT.

6.1.1 Initial considerations

Ideally, as in the case with DWT, it is desirable to have a
time-frequency tiling that would coincide with the nominal
tiling provided by the DWPT tree. This would require the
frequency response of the wavelet filter and the scaling fil-
ter to be confined to [1/4,1/2] and [0,1/4], respectively.
Although that is not practically achievable, the criterion for
selecting a particular wavelet function and therefore, the cor-
responding wavelet and scaling filters, is based on the degree
of proximity of their frequency responses to the ones of the
ideal high-pass and low-pass filters, respectively. Therefore,
the requirement to keep the leakage of energy to neighbor-
ing frequency bands as low as possible, and at the same time
maximizing the amount of energy in the specified frequency
band was set.

Comparing the frequency responses of the respective
wavelet and scaling filters, three wavelet functions were
initially studied: Daubechies’ wavelet of order 44, Battle-
Lemarié polynomial spline wavelet of order 5 and dis-
cretized Meyer wavelet. For reasons of comparison, Daube-
chies’ wavelets of order 12 and 32 utilized in earlier re-
lated work (Farooq and Datta 2002; Sarikaya et al. 1998)

were also included. A thorough description of all the afore-
mentioned wavelets along with their corresponding wavelet
and scaling filters is available in Mallat (1998). For com-
prehensiveness of our exposition, the frequency responses
of the wavelet and scaling filters are illustrated in Fig. 4.
As the figure presents, the frequency responses of the fil-
ters corresponding to Daubechies’ wavelet of order 44,
Battle-Lemarié polynomial spline wavelet of order 5, dis-
cretized Meyer wavelet and Daubechies’ wavelet of order
32 have approximately the same characteristics in the in-
terval [0,−3] dB. On the contrary, the frequency responses
of the filters corresponding to Daubechies’ wavelet of order
12 are much different. As a consequence, we expect that all
wavelets (except Daubechies’ wavelet of order 12) would
lead to a similar tiling of the time-frequency plane. A fur-
ther purely theoretical analysis based only on the properties
of these five wavelets was regarded inappropriate due to var-
ious factors, among which are the approximate character of
critical bands and the non-deterministic nature of the speech
signal. In addition, the considerable difference among the
frequency responses outside the interval [0,−3] dB might
play, or might not play, a significant role for the wavelet per-
formance in the specific setup. In view of this, an objective
evaluation of the SV performance was performed in order
to determine the most suitable amongst the five candidates.
Details about the evaluation procedure and the ensuing ex-
perimental results are presented in the following subsection.

6.1.2 Objective evaluation of the candidate wavelet
functions

Exploiting a common DWPT tree (which is presented in
Sect. 6.2 under the provisional designation WP-0) as an ap-
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Table 1 Experimental evaluation of five wavelet functions on the
speaker verification task

Wavelet function EER [%]

Battle-Lemarié, order 5 1.53

Discretized Meyer 1.87

Daubechies, order 12 2.49

Daubechies, order 32 2.10

Daubechies, order 44 2.25

proximation of the critical bands, five consecutive experi-
ments were performed. Each time, a different DWPT that
corresponds to one of the five wavelets under consideration
(Battle-Lemarié polynomial spline wavelet of order 5, dis-
cretized Meyer wavelet, and Daubechies’ wavelets of order
12, 32 and 44) was implemented. In these experiments the
Polycost speaker recognition database described in Sect. 3.1
was employed.

In brief, the client models were trained by employing
the English utterances from the first two sessions of each
speaker, since a single session did not provide sufficient
amount of training speech. In average, about 35 seconds
of voiced speech were available for training each speaker
model. In our setup, fifty male speakers were enrolled as au-
thorized users and the remaining twenty-four speakers were
considered as unknown to the system impostors. The refer-
ence model was built by exploiting the same speech material
used for training the fifty user models. In total, 500 target
and 36500 impostor trials were performed, with 10 target
and 730 impostor trials per user model. Both unknown im-
postors and pseudo-impostors performed the fraud trials—
in ten separate attempts per impostor. In average, about 1.3
seconds of voiced speech per test utterance were available.
The actual amount of voiced speech in the particular trials
ranged between 0.4 and 2.1 seconds.

Despite the observation that all candidate wavelet func-
tions (with the exception of Daubechies’ wavelet of or-
der 12) possess similar characteristics in the frequency do-
main (refer to Fig. 4), the experimental results presented in
Table 1 reveal that these wavelets have noticeably differ-
ent functioning concerning the SV task. In fact, the Battle-
Lemarié wavelet provides the lowest error rate exhibiting a
considerable advantage over the Discretized Meyer wavelet
and Daubechies’ wavelets of order 32, 44, and 12. The au-
thors deem the explanation behind this success of the Battle-
Lemarié wavelet consists in its frequency-domain proper-
ties. Nevertheless, the contribution of its time-domain prop-
erties is not excluded either. Therefore, owing to its advanta-
geous performance, the Battle-Lemarié wavelet was adopted
as the basis wavelet function that provided the correspond-
ing wavelet and scaling filters utilized in the formulation of
DWPT, which is presented in the following subsection.

6.2 Wavelet packet tree design

In the present subsection, the DWPT based on the Battle-
Lemarié of order 5 wavelet and scaling filters is employed
for the approximation of the critical bands. The major reason
for choosing DWPT instead of other candidate transforms
(such as DFT) is the undeniable virtues of the DWPT, such
as the flexible tiling of the time-frequency plane and its abil-
ity for fine-tuning of the time-frequency tiling. Exploiting
these advantages, DWPT provides an efficient approxima-
tion of the critical bands in a natural manner by adapting its
frequency resolution along the frequency axis.

Although from theoretical point of view we were aware
about the advantages of the DWPT, we proceeded with as-
sessing the practical worth of using either DFT- or DWPT-
based analysis. Thus, the wavelet packet trees evaluated here
were implemented in terms of both DFT and DWPT. The ex-
perimental evaluation is discussed later on in this subsection.
In the following, we place emphasis upon the DWPT-based
analysis.

While there is a lot of flexibility in choosing resolutions
to cover the whole frequency range [0,4000] Hz, there are
practical limitations concerning the quantity and numeri-
cal values of the available resolutions because of the lim-
ited length of the analyzed speech segment. When telephone
speech sampled at 8 kHz is assumed, our desire to keep
short-term stationarity of the speech signal imposes a seg-
ment length of about 20 ÷ 26 milliseconds, which is in con-
flict with the requirement of the DWPT decomposition that
the number of speech samples has to be equal to a power of
two. Having in mind that we are going to exploit only the
voiced speech, we consider a segment length of 32 millisec-
onds, which is equivalent to 256 (= 28) samples. This size is
a good trade-off allowing us to achieve a good resolution of
the DWPT analysis while still preserving a reasonable sta-
tionarity of the signal in any particular voiced speech frame.

The maximum resolution achieved by the DWPT de-
pends on the time length of the signal under analysis.
Thus, for time signals of N samples, the maximum res-
olution of the DWPT is dictated by the maximum de-
composition level, j = log2(N). Therefore, the best res-
olution is (1/2)jFN = 1/2j+1 where FN = 1/2 is the
Nyquist frequency. In our case N = 256, the maximum de-
composition level is j = 8, and best resolution is 1/29 =
1/512, while other potential resolutions belong to the set
{1/256,1/128,1/64,1/32,1/16,1/8,1/4}. Considering a
sampling frequency of 8 kHz, meaningful resolutions are
{15.625 Hz, 31.25 Hz, 62.5 Hz, 125 Hz, 250 Hz, 500 Hz,
1000 Hz, 2000 Hz}.

According to relationship (12), the ERB is an increasing
function of frequency f . We consider the values of ERB that
are equal to the resolutions provided by the DWPT. Thus,
the exact frequencies at which ERB values change from
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Fig. 5 A portion of the DWPT tree decomposition that illustrates the process of building all 16 candidate trees. Dashed squares present the parts
of the tree that vary in frequency resolution. Double dashed squares present the parts that retain the same resolution for all the candidate trees

Table 2 DWPT resolutions
suggested by ERBs and
implemented with DWPTs
frequency bands

Frequency Bands [Hz] DWPT resolutions [Hz]

Suggested by Implemented with Tested Selected for the

ERBs DWPTs candidates initial tree WP-0

60–350 62.5–375 15.625, 31.25 31.25

350–930 375–1000 31.25, 62.5 31.25

930–2090 1000–2250 62.5, 125 62.5

2090–4000 2250–4000 125, 250 125

one DWPT resolution to the next can be obtained. By solv-
ing (12) for f , we locate the precise frequencies that cor-
respond to these specific values of ERB. Therefore, accord-
ing to relation (12) the ERB values of {31.25 Hz, 62.5 Hz,
125 Hz, 250 Hz, 500 Hz} correspond to frequencies {60 Hz,
350 Hz, 930 Hz, 2090 Hz, 4400 Hz}, respectively. Consid-
ering the approximate character of the ERB, the values com-
puted for f constitute rough boundaries obtained during the
selection of appropriate resolutions that correspond to vari-
ous values of ERB.

In Fig. 5, the DWPT resolutions that were tested in the
specific frequency bands of interest are presented. In the
experiments, we systematically fluctuated around ERB val-
ues by varying the resolution a step higher or lower ac-
cording to the DWPT structure. As Table 2 reveals, the fre-
quency bands suggested by the ERBs were accommodated
in a way that their boundaries become multiple of the val-
ues of both candidate resolutions. Thus, the DWPT trees are
constructed for the frequency bands defined in the second
column of Table 2, by utilizing the resolutions specified in
the fourth column of the same table. The resolutions of the
DWPT are 31.25 Hz, 62.5 Hz and 125 Hz in the frequency

bands [0,1000] Hz, [1000,2250] Hz and [2250,4000] Hz,
respectively. The tree constructed in this way is described
by the set of vectors: Sinit = S0 = {W0

7 − W31
7 ,W16

6 − W35
6 ,

W18
5 − W31

5 }.
In each frequency band ([62.5,375], [375,1000],

[1000,2250], [2250,4000] Hz) two resolutions were tested
(15.625,31.25), (31.25,62.5), (62.5,125), and (125,

250) Hz, respectively—one just above the CB value for the
specific center frequency and the other below. Through ex-
tensive experimentation, we derived the following general
conclusions: (a) starting from 0 Hz, and going up to 350 Hz,
the most appropriate DWPT resolution is 31.25 Hz; (b) in
the range from 350 Hz to 4000 Hz, the appropriate DWPT
resolution is half the CB; or, in mathematical terms:

DWPT resolution

=
{

31.25 Hz, for f ∈ [0,350) Hz,
CB/2 Hz, for f ∈ [350,4000] Hz.

(16)

Principally, the DWPT tree was designed according to
the results summarized in Table 2. The approximate charac-
ter of the critical bands as explained in Sect. 4, and in depth
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in Moore (2003), motivated us to test a variety of combina-
tions at the points on the frequency axis where the resolu-
tion changes. For example, at frequency f1 = 1000 Hz the
DWPT resolution changes from 31.25 Hz to 62.5 Hz, and at
frequency f2 = 2250 Hz it changes from 62.5 Hz to 125 Hz.
A set of 16 different WP trees, provisionally denoted as WP-
0 to WP-15, was constructed each having a combination
of different frequency resolutions in the frequency bands
[1000,1250] Hz and [2250,2750] Hz. For example, the
wavelet packet tree WP-9 is constructed with the frequency
resolutions 31.25, 62.5, 125, and 62.5 Hz in frequency
bands [1000,1125] Hz, [1125,1250] Hz, [2250,2500] Hz,
and [2500,2750] Hz, respectively. Two of the sixteen trees,
namely the WP-5 and WP-13, were empirically derived ear-
lier and employed for the task of speaker verification in Sia-
farikas et al. (2004), Ganchev et al. (2004). In the present
study, all potential solutions are explored in a systematic
manner, and the best one among all WP trees is selected.

Table 3 describes the sixteen DWPT tree candidates that
were compared in the experiment. Columns 2 to 8 contain
the DWPT vectors used in each tree along with the differ-
ent resolutions provided. The EER results for the DWPT are
presented in column 9. Column 10 presents the results for
the DFT-based filter-banks that have the corresponding fre-
quency resolutions. As a whole, the DWPT-based features
outperformed the corresponding DFT-based features. This
is a consequence of the specific benefits of wavelet packet
transform in comparison with the DFT, as those have been
presented in Sect. 5.2. In summary, the superior performance
of DWPT can be principally attributed to the following three
reasons:

(a) The time-frequency localization of the DWPT, in con-
trast to the DFT which provides only frequency local-
ization of a signal.

(b) The possibility of selecting among a wide range of
wavelet functions which consist of the basis functions of
the DWPTs providing the opportunity to select a wavelet
that best suits the specific task under consideration. In
contrast, the DFT relies only on a basis of sinusoidal
functions.

(c) The possibility of selecting among a variety of different
DWPTs especially designed for some particular task.

As the experimental results illustrate, the exact location
of the switch-points, where the resolution changes from a
finer to a coarser level e.g. the frequencies 1000 Hz and
2500 Hz, influences the SV performance. The objective
evaluation performed here led us to the conclusion that
the DWPT tree, designated as WP-2, provides the low-
est overall EER among all DWPTs and DFTs. According
to Table 3, WP-2 has the following resolutions: 31.25 Hz
in the frequency band [0,1000] Hz, 62.5 Hz in the band
[1000,2500] Hz and 125 Hz in the band [2500,4000] Hz,

which turned out to provide advantage over the other candi-
dates. Finally, according to Table 3, the WP-2 tree is de-
fined as the subset of vectors S2 = {W0

7 − W31
7 ,W16

6 −
W39

6 ,W20
5 − W31

5 }.
In view of the experimental results, the DWPT-based

WP-2 is the most favorable time-frequency representation
of the speech signal for the purpose of SV, and thereof is
utilized in the speech parameterization proposed in the fol-
lowing subsection.

6.3 Computation of the proposed speech parameters

According to the experimental results presented in Sects. 6.1
and 6.2, the Battle-Lemarié wavelet of order 5 was found
to be the most appropriate basis function, and the wavelet
packet tree WP-2 was observed to provide the most suitable
tiling of the time-frequency space as concerns the speaker
verification task. Based on the DWPT decomposition that is
being implemented using the wavelet packet tree WP-2 and
the Battle-Lemarié wavelet function, we introduce a novel
set of speech features, which is purposely designed for the
tasks of speaker recognition. For simplicity and clarity, in
the rest of our exposition, the proposed feature set is denoted
as WP1-proposed, or most often just as WP1. The notation
WP1, as well as the other notations of wavelet-based speech
features (for example: WP2 and WP3) used in Sects. 7 and 8
are conventional, and thus, should not be perceived as deriv-
ative of the wavelet trees described in the previous subsec-
tion.

The signal pre-processing and feature computation steps
for the new speech features were purposely kept coherent
with the ones of the baseline MFCC (refer to Sect. 2.1.1).
This facilitates a common experimental setup and a fair
comparison of the results obtained for various speech pa-
rameterization schemes (Sect. 8). In summary, the computa-
tion of the proposed speech features, WP1, is performed as
follows:

• The sampled at 8 kHz speech signal is filtered by a fifth-
order Butterworth filter with pass-band [80,3800] Hz in
order to remove any possible drift of the signal, and to
reduce the effect of saturation by level, which might be
present in speech.

• The pre-emphasis filter H(z) = 1 − 0.97z−1 is employed.
• The discrete time speech signal is partitioned into over-

lapping segments of length 32 milliseconds (N = 256
speech samples). As discussed in Sect. 6.2, the segment’s
length is imposed by the restrictive assumption of the
power of two length of the analysis window for DWPT,
along with the desire to keep short-term stationarity of
the speech segments. A 16 milliseconds skip rate (128
speech samples) provides a reasonable trade-off between
continuity and computational efficiency. Due to the com-
pact support of wavelets, no Hamming or other complex
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Table 3 EER values for the 16 candidate trees WP-0 to WP-15. Each
tree is characterized by a set of DWPT vectors, obtained in going hor-
izontally from the name of the tree to the corresponding EER value.

The numbers below the DWPT vectors indicate the resolution in Hz
obtained with the specific vectors

WP tree Frequency Bands [Hz] EER [%]

[0,1000] [1000,1125] [1125,1250] [1250,2250] [2250,2500] [2500,2750] [2750,4000] DWPT DFT

WP-0

W 18
5 − W 19

5
125

W 20
5 − W 21

5 1.53 1.87

125

WP-1

W 18
6 − W 19

6
62.5

W 40
6 − W 43

6 1.45 1.78

62.5

WP-2

W 36
6 − W 39

6
62.5

W 20
5 − W 21

5 1.24 1.42

125

WP-3

W 16
6 − W 17

6
62.5

W 40
6 − W 43

6 1.54 1.65

62.5

WP-4

W 18
5 − W 19

5
125

W 20
5 − W 21

5 1.37 1.77

125

WP-5

W 36
7 − W 39

7
31.25

W 40
6 − W 43

6 1.67 1.67

62.5

WP-6

W 36
6 − W 39

6
62.5

W 20
5 − W 21

5 1.33 1.55

125

WP-7

W 0
7 − W 31

7
31.25

W 20
6 − W 35

6
62.5

W 40
6 − W 43

6

W 22
5 − W 31

5
125

1.44 1.55

62.5

WP-8

W 18
5 − W 19

5
125

W 20
5 − W 21

5 1.58 1.58

125

WP-9

W 18
6 − W 19

6
62.5

W 40
6 − W 43

6 1.33 1.55

62.5

WP-10

W 36
6 − W 39

6
62.5

W 20
5 − W 21

5 1.35 1.55

125

WP-11

W 32
7 − W 35

7
31.25

W 40
6 − W 43

6 1.31 1.69

62.5

WP-12

W 18
5 − W 19

5
125

W 20
5 − W 21

5 1.55 1.76

125

WP-13

W 36
7 − W 39

7
31.25

W 40
6 − W 43

6 1.33 1.52

62.5

WP-14

W 36
6 − W 39

6
62.5

W 20
5 − W 21

5 1.33 1.67

125

WP-15 W 40
6 − W 43

6 1.47 1.33

62.5

window is required, and therefore a rectangular one is im-
plied.

• A voiced/unvoiced decision is obtained. In our experi-
ments, the modified autocorrelation method with clipping
(Rabiner et al. 1976) was used, but any reliable pitch
estimation algorithm is applicable. Only voiced speech
frames are used to represent the speakers’ identity.

• DWPT with WP-2 tree and Battle-Lemarié wavelet func-
tion of order 5 is applied to the voiced speech frames. This
DWPT provides a total of B = 68 frequency subbands. It
was noticed that the first four subbands do not carry useful

information (partially due to the band-limitation inherent
to the telephone quality speech signal) and therefore, they
were discarded.

• Next, the energy in each frequency band is computed, and
then divided by the total number of coefficients present in
that particular band. In detail, the subband signal energies
are computed for each frame as,

Ep =
∑N/2j

i=1 (Wk
j (i))

2

N/2j
,

Wk
j ∈ S1, p = 1,2, . . . ,B, (17)
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where Wk
j (i) is the ith coefficient of the DWPT vector

Wk
j .

• Finally, a logarithmic compression is performed and a
Discrete Cosine Transformation is applied on the loga-
rithmic subband energies in order to obtain decorrelated
coefficients:

F(i) =
B∑

p=1

log10(Ep) cos

(
i(p − 1/2)

B

)

,

i = 0,1, . . . , r − 1, (18)

where r is the number of feature parameters.

The full dimensionality of the feature vector F(i) is
sixty-four, i.e. r = 64. However, since most of the energy of
the feature vector is carried by the first few coefficients, in
many applications the first r coefficients alone might be suf-
ficient as signal descriptors. To investigate the issue of suf-
ficient dimensionality for the needs of speaker verification,
we proceeded with computing the entire set of sixty-four
coefficients and subsequently experimented with subsets of
different size. The experimental setup and comparative re-
sults are discussed in Sect. 8.

7 Alternative DWPT-based speech parameterization
schemes

Two alternative DWPT-based speech parameterization sche-
mes, introduced by Farooq and Datta (2002) and Sarikaya
et al. (1998) are briefly outlined here. In these studies, the
Farooq-Datta’s and Sarikaya’s speech features were reported
to outperform the baseline MFCC parameters on the speech
and speaker recognition tasks, respectively. Here we are in-
terested mostly in the frequency division utilized in these
speech parameterization schemes.

7.1 The Farooq-Datta’s wavelet packet-based speech
features

Considering the phoneme recognition task, Farooq and
Datta (2001, 2002) performed a wavelet packet decompo-
sition of the frequency range [0,8] kHz such that the ob-
tained twenty-four frequency subbands closely follow the
Mel scale. Following this decomposition, the phonemes
were passed through the twenty-four wavelet packet filter-
bank and the total energy Ep in the subband p was calcu-
lated as follows:

Ep =
Np∑

j=1

(Cj,p)2, p = 1,2, . . . ,L, (19)

Fp = Ep/Np, p = 1,2, . . . ,L, (20)

where Cj,p is the j th coefficient in the pth subband, N

is the number of wavelet coefficients in the pth subband
and L is the number of subbands. The calculated energy
is then divided by the number of wavelet coefficients in
the corresponding subband thereby giving average energy
per wavelet coefficients per subband Fp . In order to obtain
features with emphasis on the lower frequency subbands,
the authors selected Daubechies’ wavelet filter of order 12.
The logarithmically compressed subband energies obtained
at the output of the filter-bank were decorrelated by apply-
ing the DCT and the first thirteen coefficients were kept as
the feature set.

For the purpose of fair comparison with the other speech
parameterization schemes evaluated in Sect. 8, certain mod-
ifications to the original settings proposed by Farooq and
Datta were effected as follows:

• Firstly, Daubechies’ wavelet filter of order 12 employed
in the original scheme was substituted with the Battle-
Lemarié wavelet of order 5. As it was experimentally
proved in Sect. 6.1, the Battle-Lemarié wavelet provides
superior SV performance.

• Secondly, instead of the frequency range [0,8] kHz uti-
lized by the authors, in this work the frequency range
[0,4] kHz is considered. For the elimination of this dis-
crepancy, the original wavelet decomposition, as it was
described in Farooq and Datta (2002), is kept but we
did confine it to [0,4] kHz by discarding the upper
four wavelet packet subbands, which cover the frequency
range [4,8] kHz. Thus, only the lowest twenty filters were
retained from the original filter-bank. In Fig. 6, the fre-
quency resolution of the twenty frequency subbands cor-
responding to Farooq and Datta’s wavelet packet tree is
presented with black solid line and ‘o’-marks. For the
purpose of comparison similar plots are presented for the
other speech parameterization techniques under consider-
ation here.

• Thirdly, after the decorrelation with the DCT, all twenty
non-redundant coefficients were utilized as opposed to the
first thirteen coefficients originally retained by Farooq and
Datta. This allowed the evaluation of the different kinds
of speech parameters for a common size of the feature
vector.

The parameters obtained after these changes are referred to
as Farooq-Datta’s speech features, or simply WP2.

7.2 The Sarikaya’s et al. wavelet packet-based speech
features

In Sarikaya et al. (1998), considering the speaker identifi-
cation problem, the authors performed a wavelet packet de-
composition of the frequency range [0,4] kHz such that the
twenty-four frequency subbands obtained follow the Mel
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Fig. 6 Frequency warping for
the speech parameterization
schemes under consideration.
Each plot presents the frequency
resolution in relation to the
central frequency of the filters

scale. In brief, after some experimentation Sarikaya et al.
found that the specific wavelet packet decomposition de-
scribed in their work (Sarikaya et al. 1998) provided the best
overall result among a reasonable number of wavelet packet
trees. The proposed tree assigns more subbands between
low to mid frequencies while keeping roughly a log-like
distribution of the subbands across frequency. In Fig. 6, the
frequency resolutions versus the corresponding frequency
band for their tree is graphically illustrated with dashed light
(yellow) line with ‘x’-marks. Following the decomposition,
the energy of each subband is computed and then scaled by
the number of transform coefficients in that subband. The
subband signal energies are computed for each frame as fol-
lows:

Si =
∑

m∈i[(Wψx)(i),m]2

Ni

, i = 1,2, . . . ,24, (21)

where Wψx is the wavelet packet transform of signal x, i is
the subband frequency index and Ni is the number of coeffi-
cients in the ith subband. Wavelet packet transform was im-
plemented by using Daubechies’ wavelet filter of order 32.
The speech features, which Sarikaya et al. named Subband
Based Cepstral coefficients (SBC), are derived from sub-
band energies by applying the DCT transformation:

SBC(n) =
L∑

i=1

log(Si) cos

(
n(i − 1/2)

L
π

)2

,

n = 0,1, . . . , r − 1, (22)

where r is the number of SBC parameters and L is the total
number of frequency bands.

For the purpose of fair comparison with the other speech
parameterization schemes evaluated in Sect. 8, the follow-
ing two modifications to the original settings proposed by
Sarikaya et al. were effected:

• Firstly, Daubechies’ wavelet of order 32 employed in the
original approach of Sarikaya et al. was substituted with
Battle-Lemarié wavelet of order 5.

• Secondly, only the first twenty coefficients were retained
out of the total number of twenty-four, while Sarikaya et
al. utilized the whole set of twenty-four coefficients.

The speech parameters obtained after these modifications
are referred to as Sarikaya’s features, or simply WP3.

7.3 Comparison among the various parameterization
schemes

Despite their explicit dependence on the DWPT, the pro-
posed speech parameters WP1 are considerably differ-
ent from the related work (Farooq and Datta 2002) and
(Sarikaya et al. 1998) both in their design philosophy and
implementation. In brief, the main differences result from
the design strategy that we utilized: Firstly, the underlying
wavelet function was selected among others in an objective
way aiming at the maximization of the SV performance.
Secondly, the optimal frequency resolution in the various
subbands has been selected in order to account for the re-
cent advances in the theory of critical bands. Thirdly, the
wavelet packet tree design was fine-tuned in a systematic
way to provide frequency division that better suits for dis-
crimination among human voices.

Aiming at a clearer illustration of the dissimilarities
among the frequency warping schemes under consideration,



214 Int J Speech Technol (2007) 10: 197–218

in Fig. 6 we present a direct comparison of the frequency
resolution in relation to the corresponding frequency band.
As the figure presents, the general trend of all frequency
warping schemes is to attribute the finest resolution to low
frequency bands, whereas the coarsest resolutions are as-
signed to the higher frequency bands. The frequency res-
olution of the proposed frequency division is at all times
finer (with a factor of two to four) than those of the other
schemes. In fact, the frequency resolution of the proposed
speech features, WP1, is in accordance with the relationship
(16) which accounts for the recent advances in the theory of
critical bands.

8 Experiments and results

In a thorough evaluation, the proposed feature set WP1 was
compared with the baseline MFCC and with two alterna-
tive DWPT-based speech features: WP2 and WP3. The pro-
posed WP1 features were obtained as described in Sect. 6.3.
The Sarikaya’s and Farooq-Datta’s features were computed
following the methodology proposed by the corresponding
authors but adapted to the needs of impartial comparison
as presented in Sect. 7. In brief, since in the present work
we focus on the approximation of the critical bands with
wavelet packets, a direct comparison with other speech pa-
rameterization schemes is required. To this end, for all fea-
ture sets, each voiced speech frame is being decomposed
with the DWPT in the frequency range [0,4] kHz using a
common wavelet function (Battle-Lemarié of order 5) and
the first twenty coefficients are retained. Therefore, features
sets WP1, WP2 and WP3 differ solely in the wavelet packet
tree and subsequently in the frequency warping along the
frequency range [0,4] kHz. The computation of the baseline
MFCC parameters is outlined in Sect. 2.1.1. This implemen-
tation of the MFCC parameters was found more successful
for SV (details in Ganchev et al. 2005) than other MFCC im-
plementations (Davis and Mermelstein 1980; Young 1993,
etc.).

All validation experiments were performed on the NIST
2001 speaker recognition database which was described in
Sect. 3. A common protocol was followed in all experiments
according to the rules described in the 2001 NIST SRE Plan
(NIST 2001). In brief, approximately 40 seconds of voiced
speech were detected in the training data—a single two-
minute recording per target speaker. The speech parame-
ters computed for the voiced speech frames were utilized for
building the clients’ models. The common reference model
was created by exploiting the male training speech avail-
able in the 2002 NIST SRE database (NIST 2002). Approx-
imately one hour and forty minutes of voiced speech was
available for that purpose. After the training, the user mod-
els were tested carrying out all male speech trials as defined

in the complete one-speaker detection task (index file ‘de-
tect1.ndx’). Each SV experiment included 850 target and
8500 impostor trials with a duration from 0 to 60 seconds
of speech, and employed all transmission channel types.

To this end, we performed two different experiments—
the first one with uniform number of coefficients (twenty)
for all speech parameterization techniques under considera-
tion here, and the second one with the genuine set of speech
features as they were proposed by the corresponding au-
thors. These two experiments, as well as a supplementary
one, which studies the performance of WP1 for various sizes
of the feature vector, aim at providing a better understand-
ing of the advantages of the evaluated parameterization tech-
niques and the practical worth they offer.

For the purpose of fair comparison, in the first experi-
ment we did alignment of the feature vector size to 20 pa-
rameters. Thus, only the first twenty parameters were kept
for the feature vectors that have more coefficients. Figure 7
presents the results obtained for the evaluated speech para-
meterization techniques and various subsets of coefficients,
in terms of EER and DCFopt, Fig. 7(a) and 7(b), respec-
tively. As expected, reduction of the error rate was observed
when the first coefficient (speaking about “the first” we refer
to the coefficient with index “0”—equations (3), (18), (22))
was excluded from the feature vector. It is widely acknowl-
edged that the value of the first coefficient in the cepstral-
like features is sensitive to handset/communication channel
mismatches between training and testing. This sensitivity is
due to the fact that the first coefficient is related to the loga-
rithm of the energy of the corresponding speech frame. Af-
terwards, we proceeded with an examination of the SV per-
formance, when the second, third, fourth, and fifth coeffi-
cients are also excluded from the feature set. Surprisingly, an
even more significant drop of the error rate was observed, for
the cases when the second and third coefficients were dis-
carded, along with the first one. This observation indirectly
suggests that every mismatch between training and oper-
ational conditions (due to different handsets/transmission
channels/environmental conditions, linguistic contents, etc.)
notably affects not only the first coefficient but the first three
ones. However, when coefficients beyond the third one were
excluded from the feature set, higher error rates were ob-
served.

As the experimental results presented in Fig. 7(a) and 7(b)
suggest, the best subset for all features is {4:20}. The pro-
posed speech features, WP1{4:20} lead to the lowest EER
among all subsets, and the MFCC{4:20} to the lowest DC-
Fopt. The WP2 and WP3 features outperform the MFCC
in terms of EER, but are significantly inferior in terms of
DCFopt. A more illustrative representation of the SV per-
formance is presented in Fig. 8(a) where all results are
mapped in the two-dimensional DCFopt—EER space. The
lower left-hand part of the figure corresponds to the lowest
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Fig. 7 The speaker verification performance for various subsets of speech features in terms of Equal Error Rate (EER) in percentage and Optimal
Decision Cost (DCFopt)



216 Int J Speech Technol (2007) 10: 197–218

Fig. 8 Performance comparison: (a) mapping in the EER-DCFopt space, (b) mapping EER vs. number coefficients, and (c) DCFopt vs. number
of coefficients

EER and decision cost DCFopt, and therefore to the best
performance. The proposed features, WP1, which are plot-
ted with triangles, demonstrate the best performance (set
WP1{4:20}). Next, the Sarikaya’s features, WP3, plotted
with squares, follow with performance nearly equal to the
one of the MFCC, plotted with rhombs. Finally, the Farooq-
Datta’s features, WP2, plotted with circles, exhibit the high-
est EER and decision cost.

In order to study the potential benefits of the larger num-
ber of coefficients that the speech features WP1 offer, we

performed supplementary experiments with increased size
of the feature vector. These experiments did not aim at iden-
tifying the best performance that can be achieved (on the
NIST 2001 database) with a subset of WP1 features, but in-
stead to study the general trend. Figure 7(c) and 7(d) present
the EER and DCFopt for subsets of WP1 that include the
first 30, 35, 40 and 50 coefficients, as well as the entire set
of 64 coefficients. In the same manner as before we kept
out the first coefficient and then the first two, three and four,
coefficients from the feature vector. As the experimental re-
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sults suggest, adding more coefficients to the feature vector
is beneficial for the SV performance. However, for the very
large subsets, which have more than 40 coefficients, the per-
formance drops due to the curse of dimensionality. We deem
that on a larger database that provides more training data
even larger feature vectors will be beneficial.

In the second experiment, for which results are presented
in Fig. 7(e) and 7(f), we evaluated the speech parameteriza-
tion techniques under consideration, for the full set of co-
efficients. The only exception are the speech features WP1
for which we used only the first 40 parameters. (As we do
not have evidence that the coefficients beyond the first 40
contribute to gaining a better SV performance, we do not
include them in this experiment.) As the figures and the
corresponding tables present, the significant advantage of
the WP1 (subset WP1{4:40}), in terms of both EER and
DCFopt is convincing. Next, the WP3 (subset WP3{4:24})
have the second best performance in terms of EER, how-
ever it is outperformed by the MFCC (subset MFCC{4:32})
in terms of decision cost DCFopt. Finally, the WP2 (sub-
set WP2{4:20}) express the highest EER and decision cost
DCFopt, and therefore offers the lowest SV performance.

In Fig. 8(b) and 8(c), the EER and DCFopt vs. the size
of the feature vector for the evaluated speech features are
presented, respectively. As the experimental results suggest,
the lowest EER and the lowest decision cost DCFopt, i.e. the
best performance, was obtained for the subset WP1{4:40}.
The other feature sets express either higher EER or DCFopt.
The changeable ranking in terms of EER and DCFopt for
some subsets is due to the change in the slope of the DET
performance plots (refer to Chap. 4, Fig. 4.9 in Ganchev
2005). The DET plots are not shown here due to space lim-
itations, however, in Fig. 7 and 8 the effect from the change
in the DET plots’ slope is obvious. For instance, in Fig. 8(b)
and 8(c), MFCC{4:20} and MFCC{4:32} interchange their
ranks in terms of EER and DCFopt. The same holds for
MFCC{4:20} and WP1{4:20}. Due to this phenomenon, by
selecting specific subsets of features, one is able to trade
EER vs. DCFopt, depending on the requirements of the spe-
cific SV application.

In brief, comparing the best subsets for all speech pa-
rameterization schemes (refer to the EER and DCFopt pre-
sented in the tables in Fig. 7(a) and 7(b), and in 7(e) and 7(f),
as well as to the mapping in the DCFopt-EER space in
Fig. 8(a)), we can conclude that the Farooq-Datta’s features,
WP2, exhibit the worst SV performance among the tested
speech features, while the proposed features, WP1, present
the best one. In terms of EER, the Sarikaya’s features, WP3,
perform slightly better than the MFCCs, but are entirely out-
performed by the proposed features, WP1. For an equal size
of the feature vector, a relative reduction of the EER (DC-
Fopt) by 7%, 9%, and 9%, (5%, 5%, −1%) was observed for
the proposed speech features, WP1, when compared to the

WP3, WP2, and MFCC FB-32, respectively. Finally, for the
best feature vectors of each type, the relative reduction of
the EER (DCFopt) is 8%, 15%, 15%, (and 12%, 12%, 6%),
respectively.

9 Conclusion

A novel set of wavelet packet-based speech features, appro-
priate for the task of speaker verification, was proposed.
Our contribution is mainly in the wavelet-packet tree de-
sign, which roughly follows the critical band concept but
is fine-tuned to provide frequency division that better suits
the speaker recognition tasks. A comparative experimental
evaluation of the proposed features performed on a well-
known speaker recognition database, proved the practical
significance of our approach. In particular, the proposed
features demonstrated a superior performance when com-
pared to other wavelet packet based features and to the Mel-
scale cepstral coefficients. The superior performance of the
proposed speech features is deemed to the reason that the
(1) wavelet function, (2) design of the wavelet packet tree,
(3) selection of frequency resolution were optimized in a
systematic way to emphasize the dissimilarity between dif-
ferent voices. Finally, the proposed speech parameterization
scheme offers the advantage of computing a larger number
of relevant non-redundant parameters from a speech frame
that further contributes for obtaining a better speaker verifi-
cation performance.
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